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Continuous Models for Communication Density 
Constraints on Multiprocessor Performance 
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Abstract-Fundamental limits on the communication capabili­
ties of massively parallel multiprocessors are investigated. It is 
shown that in the limit of machines of infinite extent in which the 
number of processors per unit volume is constant and in which 
the communication bandwidth from each processor to its neigh­
bors depends only on their separation distance, interprocessor 
communication must fall off faster than the fourth power of 
distance. For machines of finite size, communication energy 
density is used as a metric to compare various machine sizes and 
packaging densities. For instance, for machines with spherical 
symmetry and uniform communication requirements, the peak 
density depends on the number of processors to the 4/3 power 
and the number of processors per unit volume to the 2/3 power. 

Index Terms-Communication limits, information density, 
massive parallelism, multiprocessors. 

I. INTRODUCTION 

MASSIVELY parallel fine-grained multiprocessors [1], 
[2] generally require massive amounts of interprocessor 

communication. Communication bandwidth is thought to 
strongly impact the performance of multiprocessors by impos­
ing limits on the degree to which processors can exchange 
information and cooperate on a single problem. In this paper, 
we examine the physical limits imposed on interprocessor 
communication by the capacity of the communication me­
dium. Other fundamental constraints that limit the perform­
ance of large digital multiprocessors can be found in [3]. We 
also present relationships between communication require­
ments and communication capacity under a number of 
different assumptions about the multiprocessor array. In the 
spirit of massive parallelism, we use continuous rather than 
discrete variables in the formulation of our interprocessc,r 
communication model. This choice makes the mathematics 
cleaner without sacrificing the physics. 

To measure the capacity of a communication medium, we 
have chosen to use information density. We first derive this 
quantity, and motivate its use, by investigating fundamentd 
limits on the communication capacity of any interconnection 
network for a multiprocessor array. We know, from informa-
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tion theory, that the energy £ 0 required to transmit one bit of 
information is on the order of k T, where k is Boltzmann's 
constant and Tis absolute temperature [4], [5]. Thus, high 
data rates require large quantities of power, independent of 
how the information is transmitted or coded. Note that these 
data rates can arise from the requirements of a single channel 
or the superposition of a number of different channels that 
interfere. If we examine a transmission medium of fixed 
diameter, whether it be a length of coaxial cable, a microwave 
waveguide, or a fiber optic link, the information velocity is 
limited to c, the speed of light. If the "wire" diameter is D, 
then the energy density in the wire must be at least BE 0 ! 
(cD 2 ), where B is the bit rate and c is the speed of light (an 
upper bound on the speed of transmission). All physical 
media, with the exception of absolute vacuum, have a 
maximum energy density that they can withstand without 
breaking down. Since electromagnetic energy is usually the 
information carrying method of choice, limits on information 
density must ultimately arise when electric forces caused by 
the information signal become significant when compared to 
the forces binding electrons to their atoms. These electric 
fields will cause the medium to behave nonlinearly, distorting 
the information. Large enough fields will cause destruction of 
the medium by tearing it apart. The largest electric fields in 
solids can be supported in materials such as mylar, polypro­
pylene, and various ceramics and glasses. These have intrinsic 
breakdown strengths in the 50-200 kV/m range [6]. One can 
counteract this phenomenon by either making D larger or 
running several cables in parallel. We therefore argue that a 
fundamental quantity which is physically limited is informa­
tion density within a cross section of space, i.e., bandwidth 
per unit area. The highest values of information density are 
found in optical fibers and VLSI chips, where values of 1019± 2 

bits/(s • m 2) can be observed. Usually communication densities 
are much lower. 

While information densities may be far from their funda­
mental limits in current technologies, there will always be 
practical limits and costs associated with different densities. 
Therefore, it is important to study the general relationship 
between information density and interprocessor communica­
tion. Given an array of processors and a communication 
medium of bounded volume, the interprocessor communica­
tion requirements necessarily generate information density 
requirements on the medium. Limits on information density, 
therefore, impose limits on the degree to which processors can 
communicate and hence cooperate. It is these limits which we 
will discuss in this paper. 
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IT. STATEMENT OF PROBLEM 

Con ider an array of infinitesimal processing elements that 
are exchanging information while carrying out a computation. 
In general, the array has a density of processors p that is a • 
function of position. The rate at which information is flowing 
from a processor at point qto one at points, denoted l(q, s), 
can al o vary as a function of position. For simplicity, we 
assume that all functions discussed are continuous and 
bounded. This section presents the machinery needed to 
analyze the interprocessor communication requirements of 
such an array. 

Depending on the physical implementation of the system, 
1he array might have any number of dimensions up to three. 
To avoid treating each case separately, the equations presented 
here use a general number of dimensions K, and are valid for 
any positive integer K. Proces ors in two-dimensional space 
might represent an array on a planar integrated circuit. Large 
systems, consisting of many VLSI subsystems, are constructed 
to take advantage of all three physical dimensions. Thus, K = 
3 must be taken as fundamental, although one might, as an 
engineering decision, restrict oneself to K ""' 2. Machines with 
K > 3, while interesting to contemplate, are not physically 
realizable. A 16-dimensional hypercube interconnect network, 
for instance, can only be built in 3-space. 

.Fir t consider the information flowing out from a single 
processing element. If all communication between every two 
processors is assumed to be through the shortest path, the flux 
density of bandwidth from a single processor is a radial vector 
field. The use of the term flux density appeals to the analogy of 
electromagnetic field theory. That is, each processor emits, 
along a radial line, that information required by other 
proces ors in that direction. Near the transmitter, the informa­
tion density due to the transmitter must contain the information 
intended for all receivers in a given direction. Further away 
from the transmitter, the information flux decreases as various 
receivers remove data. F(q, .s) represents the information flux 
density at point q originating from a processor at points. f(q, 
s) denotes the scalar magnitude of the flux and has the units 
bits/(s·proc·mK- 1). We have the simple relation 

fie- -) (1/-s) f(- -) 
q,s=lff-sl q,s. (1) 

The function/(q, s), for a given processor at points, must be 
a decreasing function of the distance I q - sl because other 
processors can only receive information from the processor at 
s. In any dimension larger than one, the surface area available 
for communication increases with distance. Therefore, when 
nonzero, f must fall with distance at least as fast as I q -
.sl 1-K, the rate seen in the absence of receiving processors. 
Fig. I illustrates the relevant geometries. In the absence of 
receivers, the total information traveling outward from .s is 
independent of distance but the information density i not. 

To represent a physical computer with discrete wires in 
terms of our continuous model, one must take a spatial 
average. For instance, if n discrete wires, each of area A and a 
bit rate B, intersect a surface of area W with a uniform 

Fig. I. The information flux leaving a point sis a decreasing function of 
distance. 

distribution, this can be modeled as a uniform information 
density of nBIW at the surface. 

The flux from a single processor can be viewed as a vector 
field, but the contributions from different processors do not 
add as vectors. If two processors are exchanging information 
at equal rates, the total communication taking place is not 
zero. As a result, our definition of the flux magnitude/(q, .s) 
assumes that it is always positive and incoming information is 
represented in the positive outgoing flux from other proces­
sors. 

To find the total communication density at a particular 
point we add the magnitudes of the information fluxes there 
originating from all processors. The total information flux 
through any point q is given by 

<ll(ff)= r xf<ii, s)p(s). 
JsER 

(2) 

ell represents the density of bits per second passing through an 
infinitesimal area of space and has the units of bits/(s • m K- I). 
Said another way, <I> represents information rate density. It is 
this density which, we argued in the Introduction, is a 
physically significant and limited quantity. Equation (2) can be 
simplified by assuming spherical symmetry about q = 0 and 
considering only the bandwidth density at the origin. As a 
result of symmetry, the only necessary coordinate is r, the 
distance from the origin. Equation (2) then becomes 

<ll(O)=CK [ (rK- 1)/(0, r)p(r) dr (3) 

where 

2 for K = 1 

21r for K=2 

CK= 41r for K=3 (3 .1) 

(K - 3)Cx-1 CK-2 
in general. 

(K-2)CK-3 

We now present the relationship between the information 
flux density F(lj, s) and the communication bandwidth l(q, 
.s). Here, the actual information flow between processors is 
assumed independent. The special case of broadcast, which is 
a violation of this assumption, will be studied at the end of 
Section III. Recall that l(q, s), with units of bits/(s·proc 2), 
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Fig. 2. 4>(0) is the sum of the communications from all processors .fto those 
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communication. Our objective is to quantify the requirement 
for locality. Assume that p = Po and that l(d) is a continuous 
bounded function of nonnegative d such that 

(7) 

for some positive constants 'Y, d0 , and M. In this case, we say 
that communication falls with order M. We have 

<l>(0) = Cxpi [ r r*K-I I(r*) dr* dr, (8) 

processors q on the other side of the origin. and therefore 

represents the information bandwidth flowing from a proces­
sor at point s to one at point q. Intuitively, the information 
flowing to a processor at q is the amount of flux disappearing 
there, scaled by the processor density p(q) at q. p has units of 
proc • m -K. This can be expressed as (where the divergence is 
taken with respect to q) 

p(q)I(lj, s) = - v' F(lj, s). (4) 

Using polar coordinates defined about the point s, and the 
radial nature of the vector field, (4) can be reexpressed in 
integral form as 

- 1 
j(q, s)= ,- -,K-1 q-s 

).. (- 'fi-s) aK-IP s+a ---
1<7-fl lli-sl 

( 
'fi-s \ 

• I s+a l'fi-sl 's; da. (5) 

This form assumes that the boundary condition of zero 
information flux at infinity is satisfied; that is, all information 
sent by a processor is received by others. 

Combining (3) and (5), we obtain 

<l>(0)=CK )~ p(r) r (r*K- 1)p(r*-r)l(r-r*, r) dr* dr. 

(6) 

These geometries are illustrated in Fig. 2. Due to spherical 
symmetry, /( - b, a) refers to the communication from a 
processor at a distance a from the origin to one a distance b 
from the origin on the opposite side. Also, by the symmetry 
assumption, p(r) = p( - r). 

Equation (6) is the central result of this paper. In the 
remaining sections, we consider some important special cases. 
First we look at the limit to global communication imposed by 
a finite communication density constraint. Then we look at 
how communication density scales with processor and com­
munication distribution. 

Ill. FINITE COMMUNICATION DENSITY CONSTRAINT 

The first special case of interest is that of p constant and 
I( q, s) a function only of the Euclidean distanced = I li - sl. 
That is, we have a model in which all of the space is filled with 
processors, each communicating with all of the others. We 
assume, however, that the emphasis is on local (d small) 

As a result of (9), <1>(0) will converge if we meet the 
constraint that 

M>K+l. (10) 

Specifically, in two dimensions the communication must fall 
off with order greater than 3 and in three dimensions, the order 
must exceed 4. d- 4 is a very rapidly decaying function and 
indicates the extreme penalty for long distance communica­
tion. Equation (6) limits the degree to which even an infinite 
number of processors can cooperate on a single problem.Mis 
so large because <1>(0) represents the energy required for each 
processor on each ray out from the origin to communicate 
with every processor in the line on the other side of the origin. 
In one dimension (K = 1), it is straightforward to see that the 
two integrations in (8) require M > 2. 

The second special case of interest is that of/ constant and p 
some continuous bounded function of the distance from the 
origin r. Many multiprocessors, such as the BBN Butterfly 
[7], strive to keep / constant so that the programmer does not 
have to deal with the added complexity of communication 
locality. Assume that I = 10 . We have 

<l>(0)=Cxlo [ p(r) r r*K-lp(r*-r) dr* dr, (11) 

and therefore 

<l>(0)~CK/o [ p(r) [ ,K- 1p(r*) dr* dr. (12) 

Noting that the total number of processors N is given by 

N = r - K p(s) = CK , .. rK-I p(r) dr, (13) 
JsER ) Jo 

we see that 

<l>(0)>l 0 N [ p(r*) dr*. (14) 

From this it can be concluded that, with uniform communica­
tion, a finite communication density requires a finite number 
of processors, as one would expect. For N to be finite, p(r) 
must fall off with an order larger than K. This is simply a 
statement that the volume of space in tlie region from r tor + 
dr grows as rK- 1. 
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In the pecial case of broadcast, in which each processor 
broadcasts its message to all other processors, the minimum 
information density is obtained when each processor's mes­
sage visits each receiving processor only once. One might 
imagine the information from a processor radiating out in all 
directions, with each processor repeating the message to those 
beyond it. In this casef(q, s) is proportional to p<K- 1>1K, the 
density of processors at q within a space of K - l dimensions 
that is perpendicular to the vector q - s. In two dimensions, 
this corresponds to the density of processors along the circle 
centered at sand passing through q. By substituting this flux 
density into (3), we get 

<I>(O) ex CKp(O)<K-l)IK )~ ,K- 1p(r) dr. (15) 

Along with ( 13), this implies 

<I>(O) ex N. (16) 

Broadcast is indeed a more efficient, although more limited, 
form of communication. 

IV. COMMUNICATION SCALING 

Assuming that a processor array is finite, (6) also indicates 
how communication density scales with bandwidth require­
ment and array size. Here we use <I> as a measure of the 
engineering difficulty of implementing the communication 
network. Engineering experience widely suggests that the 
difficulty of building a computer increases as the speed of the 
wires are increased and as those wires are packed more closely 
together. The backplane of a CRAY supercomputer [8] is an 
excellent example of a network in which <I> is very large and 
expensive. The maximum value of <I> a technology can achieve 
is, we suggest, one reasonable figure of merit for an 
interconnect technology. 

Consider the special case where p is constant over a finite 
array of radius R. Assume as before that I is only a function of 
distanced. Let I(d) have the constant value I0a-M for O < d 
:5 a and be I0d- M for d > a, where a is some constant such 
that O < a < R. From (6), we arrive at 

(17) 

Evaluating (17), we find that 

(18) 

where 

MaK-M+1 

(3 = . ' 
(K + l)(M-K-1) 

(18.1) 

2(2K-M -1) 
0 =--------' 

(M-K)(M-K-1) 
(18.2) 

when Mis not equal to Kor K + 1. Consistent with the results 
of the previous section, if communication falls off with an 
order larger than K + 1, <1>(0) approaches asymptotically to 
the finite value of CKI0p~f3 as R is increased towards infinity. 

If M is smaller than K + 1, (18) detem1ines the rate at which 
<l>(O) approaches infinity with increasing radius R. 

In the pecial case where M = 0 ([ a constant function of 
distance), we find that (3 = 0. If the number of processors N is 
held constant, we have 

giving rise to the three following relationships: 

<1>(0) ex N(K+l)IKPt-l)IK, 

<l>(0) ex N 2 R 1-K, 

<I>(0) ex RK+lp~. 

(19) 

(20) 

(21) 

(22) 

From (20), we can see how communication density decreases 
with the spreading of a processor array. With uniform 
communication among a fixed number of processor , the 
communication density falls off as the volume to the power (1 
- K )/ K. For a two-dimensional array on a planar integr<!ted 
circuit, every factor of four increase in the area produces a 
factor of two reduction in the communication density. If, on 
the other hand, the processor density is held constant and the 
number of processors is increased by a factor of four, the 
communication density is increa ed by a factor of eight. 

Equation (19)-(22) allow us to understand better the 
constraints on making a machine, in which I is constant, 
larger. If we keep the technology constant, and by this we 
mean keeping <1>(0) constant, and restrict the discussion to K 
= 3, then we discover that the radius of the machine must 
increase linearly with N and the density must fall off as N 2. In 
a given technology, a machine that has twice the number of 
processors occupies eight times the volume, assuming the 
technology is equally strained in both cases. 

V. CONCLUSION 

We have presented a continuous model for communication 
density in large multiprocessor arrays. Physical sy terns, 
regardless of their architecture, must contend with the limits 
we described. While our analysis i only valid for straight line 
communication, the average value of <I> can only increase 
when line-of-sight communication is not used. This is because 
<I> represents an information rate density. If information takes 
the straight line route, then it occupies the minimum volume 
over a minimum time of flight and hence contributes mini­
mally to a volumetric and time average. 

We have ob erved that <I> is a good measure of the difficulty 
and cost of building a machine's interconnect technology. The 
use of <I> is further justified by the fact that it does have a 
physical maximum based on material properties and informa­
tion theory. This paper is essentially a discussion of the 
implications which follow from identifying communication 
density as a fundamental quantity. Equations (1)-(6) are a 
presentation of the general formulation of the theory and the 
remainder of the paper investigates the theory's application to 
finite and infinite machines. For infinite machines, we 
discover the intuitively appealing result that there are limits on 
our ability to focus them on a single problem. For finite 
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machines, the degree to which communication density must 
increase as the number of processors grows has been quanti­
fied in Section IV. 

The purpose of this research is to allow the computer 
architect to think about machine tradeoffs when only general 
requirements on locality are specified-and before a network 
topology is chosen. If, for instance, locality is not exploited (/ 
constant), then one can immediately make statements about 
how the size of the machine grows with processor number. 
Both the strength and weakness of our approach is that it deals 
with the functionality, rather than the architecture, of a 
network and hence the statements we can make are very 
general. 

REFERENCES 

(1] W. D. Hillis, The Connection Machine. Cambridge, MA: MIT 
Press, 1985. 

[2] S. E. Fahlman, G. E. Hinton, and T. J. Sejnowki, "Massively parallel 
architectures for AI: Netl, Thistle, and Boltzmann machines," in Proc. 
Nat. Conf Artif. Intell., Washington DC, 1983, pp. 109-113. 

[3] R. W. Keyes, "Fundamental limits in digital information processing," 
Proc. IEEE, vol. 69, pp. 267-278, 1981. 

(4] C. E. Shannon and W. Weaver, The Mathematical Theory of 
Communication. Urbana, IL: Univ. Illinois Press, 1949. 

[5] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman 
Lectures on Physics. Reading, MA: Addison-Wesley, 1975. 

[6] J. J. O'Dwyer, The Theory of Electrical Conduction and Break­
down in Solid Dielectrics. Oxford, England: Clarendon, 1973, also 
C. Cooke, private communication. 

[7] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. 
Blackadar, "Performance measurements on a 128-node butterfly 
parallel processor," in Proc. 1985 Int. Conf. Parallel Processing, 
IEEE Comput. Soc. Press, Aug. 20-23, 1985. 

[8] R. M. Russell, "The CRAY-I computer system," Commun. ACM, 
vol. 21, pp. 63-72, 1978. 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 6, JUNE 1988 

Lance A. Glasser (S'73-M"79) received the B.S. 
degree in electrical engineering from the University 
of Massachusetts, Amherst, in 1974 and the S.M. 
and Ph.D. degrees from the Massachusetts Institute 
of Technology, Cambridge, in 1976 and 1979, 
respectively. 

He is currently an Associate Professor in the 
Department of Electrical Engineering and Com­
puter Science, Massachusetts Institute of Technol­
ogy. Since joining the faculty, his research interests 
have shifted from microwaves and picosecond 

optics, to high-performance VLSI circuits and systems. In addition to 
numerous articles and patents, he has written, with Dan Dobberpuhl, The 
Design and Analysis of VLSI Circuits, (Reading, MA: Addison-Wesley). 

Dr. Glasser is the 1986 recipient of the ASEE Frederick Emmons Terman 
Award. 

Charles A. Zukowski (S'83-M'85) was born in 
Buffalo, NY, on August 17, 1959. He received 
B.S., M.S., and Ph.D. degrees in electrical engi­
neering from the Massachusetts Institute of Tech­
nology, Cambridge, in 1982, 1982, and 1985, 
respectively. 

Between 1979 and 1982 he worked as a student at 
the IBM T. J. Watson Research Center, and from 
1982-1985 he studied under an IBM fellowship. 
Since 1985 he has been an Assistant Professor in the 
Department of Electrical Engineering, Columbia 

University. New York, NY. He is the author of the book The Bounding 
Approach to VLSI Circuit Simulation (Hingham, MA: Kluwer, 1986). His 
research interests include VLSI circuit analysis, VLSI circuit design, CAD, 
and computer architecture. 

Dr. Zukowski is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. 


	sc009d09f5.tif
	sc009d09f501.tif
	sc009d09f502.tif
	sc009d09f503.tif
	sc009d09f504.tif

