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The Stability and Passivity of MOSFET 
Device Models That Use Nonreciprocal 

Capacitive Elements 
LANCE A. GLASSER 

Abstract -We examine the activity and stability or circuits built rrom 
device models formed by a linear active or passive multiport resistor in 
parallel with a positive definite, but nonreciprocal, multiport capacitor. 
Numerical range methods are used to determine the maximum fre
quency of oscillation and maximum exponential growth rate of the 
solutions for both conservation of real power and conservation of 
complex power. We also examine the stability and activity of these 
devices when a positive-definite multiport resistor is added in series- It 
is shown that with the inclusion of the resistor, the circuit becomes 
passive at high frequencies even if the capacitor is nonreciprocal. The 
implications of these results for MOSFET device modeling are dis
cussed. 

I. INTRODUCTION 

IN THIS PAPER, we will investigate linear models for 
active multiport circuit elements in light of recent mod

eling trends, which include the use of nonreciprocal reac
tances in device models. Several trends in device models 
for circuit simulation are evident. The first point is that 
for applications such as VLSI the dynamics of the intrin
sic device tend to be dominated by extrinsic circuit para
sitics. For instance, although there has been a continuing 
effort to develop accurate MOSFET capacitance models, 
especially for analog circuit design, it can be argued that, 
in most applications, it is much more important to model 
accurately such extrinsic elements as the resistance of 
lightly doped drains, overlap capacitances, and intercon
nect capacitors and resistors. Second, there is a high 
premium on developing a model that is easily applicable 
to large-signal analysis_ Thus, although many sophisti
cated linear RC transmission line models were developed 
for MOSFET's in the 1960's [l]-[5], the most widely used 
MOSFET models today consist of a nonlinear multiport 
resistor in parallel with a nonlinear multiport capacitor. 
These models are particularly well suited for incorpora
tion into large-signal circuit simulators. The Meyer model 
[6] is an example of such a simulation-oriented model 
and, even in this simple case, there have been problems 
stemming from the nonlinearity of the reactance. Third, 
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we have seen the emergence of a new type of model, a 
model with asymmetric linear reactances. Such models 
are widely used for MOSFET's [7] and are also important 
in superconducting field-effect transistors [8]. The issue of 
nonreciprocal linear reactances is the focus of this paper. 

We return to linear circuit theory to examine the gen
eral small-signal behavior of some large-signal intrinsic 
device models now in use. The viewpoint taken herein is 
that when pushed to their fundamental limits, the behav
ior of device models is important because circuit design
ers often use device models to explore the potential of 
unusual circuit configurations. It can be very misleading 
to have an intrinsic device model that shows anomalously 
fantastic behavior in an unconventional configuration. 
True, this anomalous behavior may mostly disappear when 
a ponderous network of extrinsic parasitics is added to 
the device, but circuit intuition, and perhaps accuracy. 
suffers. Of course, there are many criteria for comparing 
the merits of competing models. For instance, MOSFET 
capacitance models typically are judged with respect to 
charge conservation, the accuracy of the reactancc com
pared with more distributed models, and the accuracy 
compared with manufactured devices. These important 
issues are largely beyond the scope of this paper, which 
primarily considers the importance of nonreciprocal reac
tive elements in MOSFET device models. 

II. THEORETICAi. APPROACII 

The theoretical approach is based on numerical range 
concepts. Numerical range methods recently have been 
used to determine tight bounds on the natural frequen
cies of sets of linear networks [9]. In this paper, we use 
numerical range concepts to examine the resistive embed
ding of nonreciprocal reactive multiports with respect to 
activity and stability. The technique is very general, apply
ing, for instance, to an active nonreciprocal capacitor 
embedded in an active nonreciprocal multiport resistor. 
The approach has a geometric flavor. 

Following our previous work, we apply the law of 
conservation of complex power in the Laplace transform 
domain, where s = u + jw is the complex frequency vari
able. The devices under consideration are linear time
invariant n-ports described by means of their admittance 
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matrices in accordance with 

i(s) = Y(s)v(s) (I) 

where Y(s) EC" x,, is the port admittance matrix, and 
v(s)EC" and i(s)EC" are the vectors of port voltages 
and currents, respectively. The complex power p(s) enter
ing the 11-port is given by the quadratic form 

p(s) = v 11(s)i(s) = v11(s)Y(s)v(s) (2) 

where v 11(s) denotes the complex conjugate transpose of 
v(s). 

In this paper, we look at two general properties of 
networks that can he built out of the preceding 
devices-the stability, characterized hy the location of the 
natural frequencies, and passivity of the final circuit. 
These properties arc related hut not identical. A circuit 
can he active (not passive) hut contain no right-half-plane 
natural frequencies. The difference comes about because 
passivity addresses the question of whether unbounded 
power can be extracted with the correct excitation, 
whereas stability adun:sses the question as to whether the 
allowable modes can grow. The stability case is more 
restrictive, since there arc no sources to help match 
hounuary conditions. To examine activity, we invoke con
servation of real power: to examine stability. we invoke 
the more restrictive concept of conservation of complex 
power. 

We express our results in terms of the numerical range 
of Y(s ). Facts about the numerical range of matrices arc 
given in the Appendix of [9]. 

Deji11itio11 /: Let .\· be the unit sphere in C" defined 
by Sc~ {x E C"lx"x = I}. For any square matrix A E • 
C''x", the numerical range of A, W(A), is defined by 
W(A) ~ (x"Axlx E .\.}. 

Combining theorems I and 4 of (9], we have the follow-
ing theorem. . 

Theorem /: Let . / ~ (. / 1, • • ·,. / _11} be any set of linear 
time-invariant multiports, not necessarily all of the same 
size. characterized by an associated set of admittance 
matrices.'(/ ~{Y 1(s),- • ·,YM(s)}. Let {...t'i,· • ·,...t',.,} be any 
set of linear time-invariant multiports characterized by 
admittance matrices that are positive scalar multiples of 
matrices from the set ~; i.e., for each i E {I,· • ·, N}, the 
admittance matrix ...t'; is of the form a,Y...:<,/s), where 
a,ER is positive and K(·): {1,-··,N}-+{l,···,M}. De
fine 

Y( s) ~ diag{Y 1( s), • • •. )\ 1( s)}. (3) 

For s0 EC, a complex frequency not a pole of Y(s), a 
circuit that has s0 as a natural frequency and is formed hy 
interconnecting J' 1, • • ·, ../'N using only ideal (multiwind
ing) transformers and ideal connecting wire exists iff 
0 E W(Y(s 0 )). 

Theorem I motivates the following classifications of 
sets of linear devices. 

Deji11ition 2: We say a set of uniquely solvable linear 
time-invariant devices ./, as defined in Theorem I, is 
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stable if for every complex frequency s0 in the open 
right-half s plane, 0 rl: W(Y(s0)). We abbreviate this by 
saying that Y(s) is stable. It will sometimes be convenient 
to talk about a frequency interval over which Y(s) is 
stable. That is, we say that ./ is stable over the frequency 
interval fl if for every Wu E fl and <To> 0, 0 rl: W(Y(<To + 
jw 11)). If Y(s) is not stable, it is unstable. 

In other words, all networks composed of ideal wire, 
ideal transformers, and the clements of ./, taken in any 
multiplicity and impedance scaled by any positive real 
number, have voltage and current solutions that either 
decay exponentially to zero, are sinusoidal, or are con
stant, if there are no possible natural frequencies of any 
of these networks that have exponentially growing modes 
(<T11 > 0). Note that we are looking at the stability of not 
just one network, but a whole class of networks. 

Definition 3: We say a set of uniquely solvable linear 
time-invariant devices ./, as defined in Theorem 1, is 
passive if for every complex frequency s11 in the open 
right-half s plane, Y11(s 11) is positive definite, where Y11(s11) 
is the Hermitian part of Y(s11). We abbreviate this by 
saying that Y(s) is passive. If Y(s) is not passive, it is 
actil'e. 

In other words, all networks composed of ideal wire, 
iueal transformers, and the elements of ./, taken in any 
multiplicity and impedance scaled by any positive real 
number, arc passive if for all u0 > 0, Y(<T11 + jw) is positive 
definite or, equivalently, if W(Y(a 11 + jw)) lies entirely in 
the open right half-plane. (When we say that a non
Hermitian matrix A is "positive definite," we mean that 
its Hermitian part A 11 =(A+ A 11 )/2 is positive definite.) 

Our definitions of stability and passivity are typical of 
those used to describe linear networks, with the impor
tant exception that Definitions 2 and 3 apply to classes of 
networks rather than to specific networks. 

Theorem 2: If a set of linear time-invariant devices . /, 
as defined in Theorem I, is passive, then it 'is stable. If it 
is 1111.wable, then it is acti1·e. 

Generally speaking, activity is examined by looking at 
the Hermitian part of Y(s) and instability by looking at 
both the Hermitian and anti-Hermitian parts of Y(s). It is 
useful to parameterize the real and imaginary frequencies 
for which OE W(Y(s)) (the condition for instability) and 
0 E W(Y11(.d) (the condition for activity) by four physically 
meaningful numbers. We have 

"ma,-un,iahlJ W) ~ max {er E RIO E W( Y( CT+ jw) )} ( 4) 
IT 

<T111a,-acii,J cu)£ max { er E RIO E W(Y11( CT+ jw) )} (5) 
IT 

w111a,-u,h1.,hk £ max {w E RIO E W( Y(0+ jw))} (6) 
'" 

W 111a,-a,·ii,c £ max {w E Rill E W(Y11(0+ jw) )} . (7) 
w 

The parameter <r"'"' describes the maximum exponential 
growth rate of the envelope or the circuit modes, and 
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Fig. I. Numerical range of two positive-definite nonsymmetric real 
matrices G and C. The maximum and minimum eigenvalues, Amin and 
Amax• of these two matrices are also shown. The rectangles in the 
figure are bounds on W(G) and W(C). They are used in Section V. 

wmax characterizes the maximum sinusoidal frequency of 
oscillation [10]. In a circuit context, amax might be used to 
characterize the speed at which voltages in a bistable 
latch or comparator leave the region of the metastable 
point. There are two varieties of each parameter, depend
ing on whether we require conservation of complex power 
(leading to (Tmax-unstable and wmax-unstahle) or just conserva-
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W(2C) 

Fig. 2. Set W1 = {azjz E W(C) and O,;;;, a ER). 

tion of real power (leading to (Tmax-aclive and wmax-ac1ivc). Fig. 3. Set W2 = {x + azjz E W(C), XE W(G}, and O,;;;, (TE R). W2 is a 
bound on W(G + aC) for a;;, 0. 

Ill. DEVICES WITH A PosrnvE DEFINITE 

CONDUCTANCE MATRIX 

In this and the next section, we examine devices con
sisting of a multiport resistor in parallel with a multiport 
capacitor. This device is a generalization of the transistor 
model considered by Thornton [11]. This device can be 
described by an admittance matrix of the form 

Y(s) = sC + G (8) 

where C, GE R"x", and C is the capacitance matrix and 
G the conductance matrix. In this section, both G and the 
capacitance C are positive definite. Because C and G are 
real, their numerical ranges W(C) and W(G) are symmet
ric about the real axis, as shown in Fig. I. The maximum 
and minimum eigenvalues ,,\ of the Hermitian and anti
Hermitian parts of G and C are also shown. (The anti
Hermitian part of G is GA11 = (G - G 11}/2.) 

The behavior of W(Y(s )) determines the stability and 
activity of the set of n-ports. For s = <r ;;;,c 0, W(sC) forms 
a cone in the closed right half-plane, directed to the right, 
as shown in Fig. 2. The cone is given by W, ~ {azla ;;;,c 0 
and z E W(C)}. By a simple inequality [12), 

W(o-C+G)~W 2 ~W,+W(G). (9) 

Fig. 3 illustrates W2 . Clearly, o-C + G is positive definite 
for all s = er ;;;,c 0. 

For s = jw with w ;;,, 0, W(sC) forms a cone in the 
nonnegative imaginary half-plane, directed up, as shown 
in Fig. 4. The cone is defined by W3 £ {jwzjw ;;;,c O and 
z E W(C)}. When C is symmetric, CAH = 0 and W3 is a ray 
consisting of the nonnegative imaginary axis. For C AH =fo 0, 
W(Y(jw)) ~ W3 + W(G); Y(s) is positive definite when <T 

W(G) 

"-nu..iGttl 
Fig. 4. Set W3 = {jwzjz E W(C) and O,;;;, w E R). WJ is a bound on 

W(jwC) for w;;, 0. Set W(G + jwC) ~ {x + jwzjz E W(C), x E W(G), 
and O,;;;, w ER). W3 + W(G) is a bound on W(G + jwC) for w;;, 0. A 
possible set W(G + jwC) is shown. 

;;,, 0 and Jwl.,:;; w' = Ami/GH)/ ,,\ma,(jCAH). Note that for a 
matrix A, W(AH) = [,,\mi/AH), Amax(AH)] and jW(AAH) 
=[Amin(JAAJ~), ,,\ma.{jAAH)]. If C is not symmetric, it is 
possible for Y(s) to be unstable at frequencies above w'. 
Even when Y(s) is stable, it is possible for the Hermitian 
part of Y(s) to become indefinite. For questions of activ
ity, we need look only at the Hermitian part of (8), 
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crmax 

(\)max-unstable( X AH:;t:Q} 

0) 

Fig. 5. General behavior of the exponential constants um .. -ac,ivc and 
Umax-unsiahlc versus frequency w for a parallel connection of posi1ive 
definite capacitance C wilh a positive definite conduclance G. No1e 
lhat lmlh O'n,n,-:.cliw and Um:,x-"n,1ahk can be positive when C is 
nonreciprocal. 

Y(CT+jw)=G 11+o-C 11+jwC 1111. (10) 

The general frequency behavior of the model in (8) can 
be easily derived from the properties of the numerical 
range. The form of the results is shown in Fig. 5. We will 
not go through the details, but the general form of the 
behavior can he found with the help of the following 
observations: 

0 E W( Y( s)) = 0 E W( G) + sW( C) 

= W( - G) 11 sW( C) '?'=0 ( 11) 

where we note that W(- G)= - W(G). We also observe 
that 

Amill ( G,1) + Amin( (Tell+ jwC/\11) 

~ Amm ( Y1,(s)) ~ Amin ( G11) + A"'"' ( <TC11 + jwC1111) ( 12) 

and 

Amin(G,,)+Amin(<TC11 + jwC1111) 

.,;;; Amin(Y11(s)).,;;; Am.,,(G 11 ) + A01 ; 0 (<TC11 + jwC 1111) ( 13) 

where we note that W(A 11)=Re{W(A)}=[Amin(A 11), 
A max (AH)]. The matrix Y( s) represents an active set of 
devices if Amin(Y11(s 0 ))<0 for Res 0 >0. 

With the help of (11) we can see that for Y( s) to be 
unstable (i.e., wma,-unst~~k to exist in Fig. 5), we need 
a + /3 -;;, rr /2. where a and /3 are the angles shown in Fig. 
1. As another example. by setting <T = 0, (13) and 
Amin(jC11ll)=-Am 0,(jC 1111) (since CER" ") lead to 
Amax (GH)/ Amax (jC/\11) ';;l, lw,1-;;, Amin (G11>/ Amax (jC1111), 
where w I is the frequency at which Y( s) becomes active. 

The graph in Fig. 5 expands on the well-known fact 
that nonreciprocal reactances are active. Take the specific 
example of a nonreciprocal capacitor. Taken by itself, this 
device is active at all frequencies. We see from Fig. 5 that 
if this capacitor is leaky (model the leakage by a parailel 
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conductance), then the capacitor must be driven at high 
frequencies for the device to become active. Only if both 
the positive definite conductance and the positive definite 
capacitance are nonreciprocal can interconnections of 
these devices (see Theorem 1) be unstable. 

It is worth emphasizing the difference between the 
preceeding theory, which, as it is a linear theory, ad
dresses incremental properties, and the large-signal issues 
of passivity and stability. For instance, the Josephson 
junction, which has a current-flux relationship i(t) = 
/ 0 sin K <f>(t ), where / 0 and K arc positive real constants 
and v(t) = ef>(t ), is a lossless passive device in the sense of 
Wyatt et al. [13], [14]. At some operating points, however, 
it has a negative and reciprocal inductance. Hence, the 
Josephson junction is incrementally active at those oper
ating points. In a large-signal sense, it absorbs power at 
some operating points and emits that power at other 
operating points-it all balances out. 

IV. DEVICES WITH AN INDEFINITE 

CoNDUCT/\NCE MATRIX 

For a MOSFET. G is active and so Y(s) is unstable at 
w = 0. Because G is active, the important question is not 
whether or not modes can grow (they can), but rather how 
fast (i.e., exp (<Tmax t )) and at what frequencies (i.e., below 
wma,) they can grow. One suspects that for any good 
physical model, there should be a limit to the rate of 
growth of the circuit modes. 

Fig. 6 illustrates the types of behavior one finds when G 
is active and C is positive definite. We see that for 
c/111 * 0, (Tma.,-ac1iw increases with lwl, a quite nonphysical 
result. Note, however, that even when C /Ill = 0, O'max-ac1ive 

docs not decrease with frequency. This is not physical 
either, although less violently ·o. In both cases, 
wmax- un,lahlc is finite as long as O fl=. W( C). 

We will now apply these results to MOSFET capaci
tance modeling. Because of its industrial importance, 
MOSFET capacitance modeling has heen the ·ubject of 
considerahle research and the field is still active today 
[ 15). Tsividis [ I 6] presents an extensive bibliography. In 
this section, we generalize the thermodynamic argument· 
of Penfield [17] and compare the various models with 
respect to the reasonableness of the fundamental limits 
(e.g., (Tma.,-uns1ahlc) !hat they predict. We also examine the 
accuracy of the lumped capacitance model with respect to 
multisection models. 

For MOSFET models, G is the conductance matrix and 
C the capacitance matrix. Using the same notation as 
Paulos and Antoniadis [ I 8], we have 

( 14) 

and 

{15) 

where w 0 is the characteristic frequency of the device, µ. 
the channel mobility, L the effective channel length, v.,. 
the transistor threshold voltage, and a E [O, l] the satura
tion parameter. The linear region is defined by a :::: I, and 
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CTmax 
CTmax-activc(XAH:;tO ) .. •······ 

............ • 

(I) 

0 max-unstable( X AH:;tO) 

CT max-unstable( XAH=O) 

Fig. 6. General behavior of the exponential constants ama,-activo and 
amax-unsta~lc versus frequency w for a parallel connection of a positive 
definite capacitance C with an active conductance G. Note that even 
when C is reciprocal. <vmax-ani,·c is infinite. 

CT max-unstable 

1.0 

0.1 

0 0.1 0.2 0.3 0.4 0.5 
a 

(a) 

!OT""--.----------------~ 

Wmu-unsrab\e 

1.0 

0 0.1 0.2 0.3 0.5 
a 

Fig. 7. Natura] frequency limits (a) ,rm;"-un:-i.itilt.: ~,nd (t,) Wm.i,-un!>-L1hk 

vc•rs11s the saturation parameter n. 81,th frc·4uencies an: normalized 
In ,.,11 from ( 1-tl. 
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Omax.uns1able 

0.8 0.,1 

a= 0.25 

I 7 

0.4 0.2 
N .,,. 00 "' "2 -:. -:. -:. 0 

ti ::i 
,. 

'-' " '-' :3: >, >, >, >, "' '-' '-' '-' '-' c... 
2 2 2 ::E 

(a) 
>100 

Wm:ix-unst:i.bk O'ma;(•Uns1:iblr. 

5.0 2.50 

a= 0.025 

I □ 

2.5 1.25 

! ".E 
.., 

"2 
~ 

0 
'-' <.) " :i 3 >, >, >, "' CJ <.) CJ c... 
2 2 2 

(b) 

Fig. 8. Comparison of ffma,-un:-ti!bk and (tlm.1.\-llfl~l:1l>IL· (normalized to 
<u0 ) for the Paulos. Ward. and multisecticm Mevcr models. (a) For the 
saturati1~n parameter. a:= 0.25. (hl For the· saturati!>n parameter, 
a= 0.02). The e1ght-sec11nn Mcver model. "Mever-X." should tie used 
as the standard against which th.: other models" arc compared. 

saturation occurs as a approaches zero. In the remainder 
of the section. all real and imaginary frequencies are 
normalized to w 0 . 

As a hccomcs large. the transistors hecomc. qualita
tively speaking. less active. Agreement among the values 
of um.,, and £tJn"" predicted hy the Meyer [6). Ward [7], 
and Paulos [18) models hecomes very close. as sc.en in Fig. 
7. As a is decreased. differl.'nces emergl.'. Fig. 8(a) com

pares <rm," -un,1:,hk and '"""" '"" 1"i,1c for six models at a= 
ll.~.5. To provide a standard for comparison. one-, two-. 
four-. and eight-section Meyer models were used. In the 
multisection Meyer models. the transistor was partitioned 
into sections of equal voltage drop (the sections were 
shorter near the drain) and the Ml.'yer model was applied 
to each section. Thus the eight-section Meyer model is a 
reasonahle approximation of a distrihutcd structure of the 
sort widely assumed to represent the true device. In the 
eight-section model. all device segments operate near the 
linear regime. where there is solid agreement on the 
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W= 8--------

o. = 0.1 

active. 
ye1 
stable 

W= 4 

w=2 

{
Cll= 1 

unstable w= 
Re 

2 

-1 
W(C) 

Fig. 9. umerical range for the single-section Meyer model as a func-
tion of frequency al a= 0.1. The numerical ranges of G and C are 
shown. ~ince C is symm~tric and ~eal, W(C) is a line segment on the 
real axis. The normalized maximum frequency of oscilla1ion is 
wma)(- un~11,t-.lL' = l ,3] · 

device dynamics. This is why there is widespread confi
dence in the distributed model as a valid standard for 
comparison. As can be . een, the Paulos model is in 
excellent agreement with the multisection Meyer model at 
a= 0.25. In Fig. 8(b), the models are evaluated very close 
to saturation, a = 0.025. The Paulos model does fairly 
well, but the value of wmax-unswhlc predicted by the Ward 
model is optimistic by several orders of magnitude. 

A qualitative appreciation for the behavior of the Meyer 
and Ward models can be obtained by examining the 
behavior of W(Y(s)). We will illustrate the numerical 
ranges of the Meyer, Ward, and Paulos models for a = 0.1 
and u = 0. The (normalized) numerical values of 
Wm;,x-unsiablc are 1.31, 2.09, and 1.46 for the Meyer, Ward, 
and Paulos models, respectively. Fig. 9 illustrates 
W(Y(jw)) for the Meyer model for w (normalized to w0 ) 

from O to 8. Since C is reciprocal (symmetric), 
<Fmax-lactivc(w) is constant at <Fmax-activc(O). As W increases, 
the admittance become increasingly capacitive until, 
above wrnax-unsiabie, resonant circuits can no longer be 
built without inductors or equivalent devices. Conversely, 
Wmax-ac1ivc is infinite; the admittance always has a negative 
real part at u = 0. Also shown in the figure is W(G)-an 
elliptical disk with foci at O and gDf(gD + g,,,)-and 
W(C)-the real line segment (0.1, 0.8). The plotted values 
of W(Y(jw)) lie within the bound W(G)+ jwW(C). (For 
the MOSFET, g0 is the output conductance and g,,, the 
transconductance.) It can be shown, using the techniques 
illustrated in (11 )-(13), that Wmax-unslahle .,;;;; 

Ama,(JGAH / Am;11(CH). This bound is conservative by 
about a factor of three. 

Fig. IO illustrates the numerical range W(Y(jw)) for the 
Ward model. Note that W(C) is no longer confined to the 
real axis because C is not symmetric. Therefore, a-max-active 

increases with jwl,' a quite nonphysical result. Note, how-
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5 a= 0.1 

{

Cll=8 4 

active, 
yet 
stable 

CO =4 

{

co-

unstable 

W= I 
(I)= 

Re 
2 

W(G) W(C) 
-1 

Fig. 10. Numerical range for the Ward model as a function of fre
quency at a= 0.1. The numerical ranges of G and Care shown. Since 
C is real but not symmetric, W(C) is an elliptical disk symmetric about 
the real axis. The normalized maximum frequency of oscillation is 
wm,.~-un.,•blo = 2.094. 

5 Im 

o. = 0.1 
4 

3 

W=2 
active 

{
w=l 

unstable 

w=0 
Re 

-I 2 

W(G) -I 

Fig. 11. Numerical range for the Paulos model as a function of fre
quency at a= 0.1 and u = 0. The normalized maximum frequency of 
oscillation is Wmax-uo\Stablc = I .46. Note that the theory in this paper 
does noi tell us about the stability and passivity of the Paulos model. 

ever, that as long as C is pos1t1ve definite, <Frnax-unsrnhle 

and Wrnax-unstable are both finite. For comparison, we 
show, in Fig. 11, W(Y(jw)) for the Paulos model, where 
the numerator and denominator of the elements of the 
admittance matrix are second order in s. For this rea on, 
it is beyond the scope of the theory developed in this 
paper. Nevertheless, we see that W(Y(jw)) behaves in an 
intuitively pleasing manner at u = 0, moving, as w in
creases, from solutions that are unstable, to active, to 
W(Y(jw)) positive definite. Because we have not investi
gated W(Y(s )) at all u > 0, we cannot yet say that the 
Paulos model does become stable at moderate frequen
cies and passive at high frequencies, as suggested by Fig. 
11, but this would be an interesting point to prove eventu
ally. It is certainly how one would like any reasonable 
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device model to behave. 

V. SERIES/PARALLEL EMBEDDINGS 

OF STABLE NETWORKS 

In the previous section, we saw that, for instance, the 
parallel connection of an active n-port resistor and a 
reciprocal capacitor is active at all real frequencies w. 
From the standpoint of predicting fundamental limits, 
these models are too simple. In this section, we look at 
series/parallel embeddings of the form 

where C, G, and RE R"x". This model is sufficient to 
examine, for instance, the MOSFET of Section IV with 
series drain, gate, and source resistors. We will see that 
the high-frequency behavior of such models is much more 
reasonable. 

The key issue is the effect of the inverse operation in 
(16) on the numerical range. Obviously, this numerical 
range can be computed for any given example, but what 
we want at this point is to discover its general behavior. 
To this end, we will look at bounds on W((sC + G)- 1) 

given bounds on W(sC + G). There are two physically 
motivated properties we would like these bounds to have: 
if sC + G is passive we would like (sC + G)- 1 to be 
passive, and if sC + G is stable we would like (sC + G)- 1 

to be stable. This is equivalent to saying that if the 
impedance representation of a circuit predicts stability, 
then its admittance representation should too. 

The simplest bound on W(A) is the rectangle defined 
by the Hermitian and anti-Hermitian parts of A, see (12], 
[ 19], and Fig. I. If A is positive definite, then A - 1 is too. 
For a positive definite matrix, ,\min(A;j 1)= l/A 111".{A 11) 

and ,\ max< A ;j 1) = I/,\ min ( A 11 ); th us, passivity is preserved 
in this approach. Unfortunately, stability is not. 

If the bound in the preceding is viewed as rectangular, 
then what we need is a polar bound, although it will not 
be convex. The angular part of the hound is straightfor
ward (20]; closely connected to W( A) is r( A) c C, the 
smallest convex cone that contains W(A). For A E C"x", 
we have 

f ( A ) ~ { X 11Ax /0 "F x E C''} . ( 17) 

From (20], 

( 18) 

where A* denotes the complex conjugate of A. 
We also define two radii, ,-inner and router• where router is 

the norm generally referred to as the numerical radius 
(21]. For a matrix A E C"x", 

,.inner~ min {/zllz E W( A)} (19) 

and 

router~ max{/zllz E W(A)). (20) 
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The bounds that we need are 
Theorem 3: For A E C''x" and O $ W(A), 

1 
(21) 

and 

2 
_ 1 ;;, rinner(A) ( rinnc,(A) ) _ 1 

rinner(A ) .,,,.. 4 2 (A) ;;,, 2 (A) 'outcr(A ). 
router router 

(22) 

Using these bounds, pass1v1ty and stability are both 
preserved under the operation of matrix inversion. 

We are interested in the case where 0 $ W(C). For /s/ 
sufficiently large, 0 $ W(K(s)) (see Sections III and IV) 
and rinner > 0. We have 

'inner( K( S)) ;;,, /s/rinne,( C) - 'outer( G) (23) 

and 

router( K( S)) ~ /s/routcr( C) +router( G) · (24) 

This leads to 

. (K-'( )) /s/rinncr(C)-routcr(G) (
2
S) 

rmncr S ;;,, 2 
4(/s/routcr( C) + l"outc,( G)) 

and 

'outer{K- 1(s))~ l . (26) 
/s/rinne,( C) - router( G) 

Concentrating on router> since /s/;;,, w, (26) leads to 

r outc,( G) 
for wmax-active > ( ) • (27) 

'inner C 

Once w>route,(G)/rinner<C), the bound on ,.outc,<K- 1(s)) 
monotonically decreases toward zero with increasing w. 

When K- 1(s) is combined with a positive definite resis
tor R, there exists a finite frequency wmax-active above 
which Z(s) is passive. Using (II), an upper bound on this 
frequency is given by the condition 

,\min( RH)= 'outc,(K-I( jwmax-activc)) 

'outer( G) 
for wmax-activc > ---- · (28) 

rinnc,( C) 

Theorem 4: Let Z(s) E C''x" be an impedance matrix, 
as described in Theorem I, where Z(s) = (sC + G) - 1 + R 
and C,G, RE R"x". If O $ W(C) and R is positive defi
nite, there exists a finite real frequency w . above max-active 
which Z(s) is passive. An upper bound on w . is max-active 
given by 

1 ( I • ) 
Wmax-active~r. (C) . (R)+route,(G) (29) 

inner 'inner 
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and amax-ac1ivc < 0 for 

(30) 

Note that this theorem does not require G passive or C 
symmetric. We require only that R be passive and O f/: 
W(C). Because W(C) and W(R) are convex and symmet
ric about the real axis, when ~ and R are positive 
definite rinncr(C) = ,\min(CH) and rinne,(R) = Amin(RH). 

Note al O that (A~ax(G 11)+A;,,a,(jGAH)) 112~route,(G);;,,. 

Amax(GH ). 

For the MOSFET model with nonreciprocal capaci
tances, R represents series drain and gate resistors-ele
ments that actually exist in the physical device. The source 
and drain resistors are al o present in simulation pro
grams, notably SPICE2 [22), that use the nonreciprocal 
Ward model. (The Paulos model is not used because it is 
not a large-signal model.) We speculate that it is the 
presence of these resistors in the models implemented in 
the simulation program that prevents the widespread ob
servation of "numerical" instability when these models 
are employed. Extremely high-frequency numerical noise, 
which one would otherwise suspect should be amplified 
by the dynamics of the Ward model, is attenuated and 
stabilized by the presence of series resistors. The maxi
mum frequency of oscillation of the Ward model is quite 
sensitive to the values of the extrinsic parasitic resistors. 

For the MOSFET model with reciprocal capacitors, the 
Paulos model shows the same qualitative behavior (at 
a = 0) as one would expect for the Meyer model with 
series gate and drain resi tors-at high frequency the 
numerical range moves into the right half-plane. 

VI. CoNcLus10N 

Almost all of the early intrinsic MOSFET models [2)-[S) 
derived by simplifying RC transmission line models con
tain a series-gate resistor, which models the flow of the 
gate capacitive displacement current through the channel 
to the source. Somewhere along the line these eries 
gate resi tors were dropped, with the unfortunate result 
that wm~x-uctivc -+ oo for modern models of intrinsic MOS

FET's. This is true both .in the case of reciprocal and 
nonreciprocal capacitances. In the case of nonreciprocal 
capacitances, umax-ac,ive is not bounded either. 

The behavior of MOSFET models that consist solely of 
a parallel multiport resistor and capacitor is fundamen
tally nonphysical. The maximum frequency of oscillation 
is infinite. This form of model should not be used for 
high-frequency simulation or analysis. The Ward and 
Paulos models represent the attempts to generate models 
that (among other things) improve on the high-frequency 
behavior of the Meyer model. Unfortunately, in the case 
of the Ward model, increased accuracy at low frequencies 
is achieved at the cost of violently nonphysical behavior at 
very high frequencies. The Paulos model appears to be 
better in this regard, although our theory is not yet 
general enough to tell the whole story. 
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Whereas non-quasi-static models of the sort investi
gated by Paulos and Antoniadis [18), Bagheri and Tsividis 
[23), and Chai and Paulos [24) represent one approach to 
extending the range of validity of MOSFET models in a 
way that does not appear to cause anomalous fundamen
tal limits behavior, the author would like to suggest that 
reinserting the series gate resistor, which appeared in the 
early model [2)-[5) and was later inexplicably dropped, 
may provide a simple method for improving the accuracy 
and high-frequency behavior of MOSFET models. 

APPENDIX 

PROOF OF TH OREMS 

Proof of Theorem 1: This theorem is a combination of 
theorems 1 and 4 of [9]. ■ 

Proof of Theorem 2: The proof follows from observing 
that OE W(Y(s)) = 0 E W(YH(s)) = Y(s) is not positive 
definite. ■ 

Proof of Theorem 3: It .i convenient to use an equiva
lent definition for W(A). For A E C"x" and w, XE C", 

Note the similarity to the definition of r( ·) in (17). Since 
0 <t W(A), A is not singular and is hence invertible. Write 
w = A- 1x, where w = 0 iff x = 0. We have 

This reduce to 

From [21), 

where HAIi is the ordinary matrix norm of A. 
Becaus W(A*)= W*(A), we also have rinncr(A)= 

rinne,(A 11) and ,.nulcr( A)= r outcr<A 11 ). Looking at rinne/A), 

=min 
x.,,11 x"(A- 1 )"A- 1x 

' 1-x-HA~- '_x I ~~1__ ,-inner( A - I) 
> mm 2 2 -1) = -..,..)--(-_---,.,-) · 

.rV'O IJxJJ 4rou1e,(A 4r;u1cr A 
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Looking at rouier(A), 

xHA- 1x 
router(A) = router(AH) = max 1-1 

x .. o x1-1(A-1) A-ix 

lxHA- 1xl 
=max----

x+o IIA- 1xll 2 

llx1-1IIIIA- 1xll llxll 
.,;; max ------,--,,--- = max ---- . 

x+O 11A- 1xll 2 xscO IIA- 1xll 

But lxHA- 1xl.,;; llx11IIA-1xll so 

!lxll llxll 2 1 
max ---- .,;; max ---- = ----
x sc o IIA-1xll x+O lxHA- 1xl rinn~r(A- 1) 

■ 

Proof of Theorem 4: Since thi • theorem concerns activ
ity, we start by looking at Amin((Z(s)) 11). We have 

A min ( ( Z ( S)) I I) = A min (( K- 1 ( S) + R) II) 

;;,. A min ( ( K- 1 ( S) )11) + A min ( R II)· 

By relating the minimum eigenvalue of the Hermitian 
part to the numerical radius. we have 

- "outer ( K- 1 ( S)) .,;; A 111i11 ( ( K- 1 ( S) ). I)· 

This, combined with (26), leads to 

Rearranging terms. we obtain 

_/, , f'inn,-r(R)-rinner(Z(<r+jw))+r.,utcr(G) 
v w- + er .,;; -------------------

,.inner( C) 

We can have OE W(Z(s)) or OE W(Z 11(.d) only if 
A01 ;11((Z(s)) 11).,;; 0. For this condition to he satisfied. we 
require 

This reduces to (29) at <r = 0. For <T > 0. the <u at which 
natural frequencies can occur is reduced further. ■ 
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