
LABORATORY FOR
COMPUTER SCIENCE tt

MIT /LCS/fM-455

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

A FAST MULTIPORT MEMORY
BASED ON SINGLE-PORT

MEMORY CELLS

R. Rivest
L. Glasser

July 1991

545 .TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A fast multiport memory based on single-port memory
cells

Lance A. Glasser*
DARPA/ISTO

Arlington, Virginia 22209

Ronald L. Rivestt
MIT Laboratory for Computer Science

Cambridge, MA 02139

- July 10, 1991-

Abstract

We present a new design for dual-port memories that uses single-port memory
cells but guarantees fast deterministic read/write access. The basic unit of storage
is the word, rather than the bit, and addressing conflicts result in bit errors that are
removed by correction circuitry. The addressing scheme uses Galois field arithmetic to
guarantee that the maximum number of bit errors in any word accessed is one. These
errors can be corrected every time with a simple correction scheme. The scheme can
be generalized to an arbitrary number of ports.

1 Introduction

The purpose of a multiport memory is to provide several simultaneous communication paths
to an array of data. Each "port" provides a separate independent access path for reading
data from the array, or writing new data into the array. This array may be accessed in a
"random-access" manner through each port-each such access may read or write any memory
position, independent of which other positions are accessed at other times or through other
ports. Thus a p-port multiport memory almost acts like p independent data arrays, except
that the contents of the arrays are always identical. Such a p-port memory can support
p-way parallel access to the data array, allowing some computations to run up to p times
faster than if the accesses were processed sequentially. Dual-port memories are widely used
in computer processors to implement an array of registers, so that an operation requiring
the values of two registers can obtain both values with a single two-port read operation
(see, for instance, [3], [6, Section 5.9], or [13]). Another common use is as a buffer between
communicating finite-state machines. This paper addresses the question of how to efficiently
implement a multiport memory.

•email address: glasserCldarpa.mil
fSupported by NSF grant CCR-8914428 and DARPA contract N00014-89-J-1988. email address:

rivestCltheory.lcs.mit.edu

Port A

Data

n

Dual-port
RAM

Figure 1: ·The block diagram of a dual-port RAM.

n

Address

PortB

In the remainder of this introduction we introduce some notation that will be used
throughout the paper.

We assume that the multiport memory is to contain an array of 2n words, where each
word is b bits long, for some integer constants n ~ I and b ~ I. The address of any memory
word can thus be specified as an-bit quantity. Many multiport memory designs implement
a bit-array (b = I); we gain some advantage by considering a larger word size (b > I).

Figure 1 illustrates a dual-port memory (also called a dual-port RAM). The two in­
put/output ports are labeled port A and port B. Each port consists of an input n-bit ad­
dress bus, ab-bit input/output external data bus, and a read/write (R/W) signal. On each
memory cycle the user of a port can supply an address and indicate whether they wish to
read or write the corresponding memory position. For a write operation, the user supplies a
b-bit data word on the data bus; for a read operation the memory places the b-bit value of
the specified word on the data bus.

We say that the memory system has a conflict if two ports attempt to access the same
memory word at the same time. If the ports are both reading the same word, then there is
really no conflict, and we expect both ports to be able to successfully read the word addressed.
However, if one port is writing a word that another port is simultaneously accessing (either
reading or writing), then it is not so clear what the multiport memory should do. There
are a number of such subtle issues that arise in handling write operations, and we will defer
discussion of them until our scheme has been presented. We present our scheme as if it
were a multiport ROM scheme (read-only memory), and then return to issues arising from
handling write operations in Section 3.4.

In Section 2 we review previous approaches to the design of multiport memories. Then
Section 3 presents our new proposal for the design of dual-port memories.

2

2 Previous designs

In this section we review the two basic approaches that have been used in the design of
multiport memories: replicated control circuits and multiplexing. The first approach is
expensive in "space" (hardware) and the second is expensive in time. We also review some
related approaches that have appeared.

2.1 Replicated control circuitry

With this approach there is a single array of memory words, but a separate decoder/selector
path for each port. The cells that store the bits are multiported.

This design has the advantage that the ports can be used to read or write data without
interacting (except when they address the same word). External devices connected to the
various ports can thus share data conveniently with low latency and high bandwidth because
the paths are independent. An example of such a design is the Texas Instrument integrated
circuit SN74172, an 8-word by 2-bit dual-port register file (5]. More recent dual-port RAMs
that use this approach are discussed in [7], [9], and [11].

Unfortunately this conceptually clean technique has two significant drawbacks. First,
because almost all hardware except the basic memory cell must be replicated and the memory
cell itself must have more wires and ports, the circuit area of a multiport RAM that takes
this approach is significantly larger than that of a single-port RAM. This increases the cost
and limits the maximum size of the device that can be built as a single integrated circuit.
Second, because the device is larger, its internal wires must be longer. These wires thus have
more capacitance, resulting in some speed degradation. This design thus yields multiport
RAMs that tend to be slower than single-port RAMs of the same memory capacity.

2.2 Time-domain multiplexing

To avoid the area-related costs of the replication approach, a second general approach in­
volves various forms of time-domain multiplexing, as described, for example, by Barber et
al. [1]. These approaches fall into two general subclasses: deterministic and stochastic. In
deterministic approaches, the speed penalty associated with time-domain multiplexing is
incurred on every access, while with stochastic approaches, there is a degree of randomness
involved, allowing this penalty to be avoided most of the time. We examine these approaches
in order.

In deterministic multiport RAMs with time-domain multiplexing, one can use a RAM
cell with fewer ports than the memory system. For instance, a dual-port RAM might use
single-port cells. This saves significant quantities of area and wire. The problem is that the
path to the data is now narrower and has less bandwidth. Thus the memory system must,
overall, be slower. For instance, the straightforward way to build a dual-port RAM out of
single-port cells is to timeshare the accessing path so that the ports alternate accesses. First
one port is allowed to use the decoder and memory cells, and then the second port is allowed
exclusive access to these resources, and then cycle repeats. The speed of the dual-port RAM
of this type is thus seen to be about half that of the single-port RAM.

3

In the stochastic approach to time-domain multiplexing of a multiport RAM, one again
builds a system where the data path is not wide enough to support the most general form
of multiport access to save area and wire. The memory system is divided into subsystems
which we will call bins. In the stochastic approach, part of the decoder path is duplicated.
Take the example of a dual-port RAM. In this case, if Port A requests access to data in
one bin and Port B requests access data in a different bin, then both service these requests
simultaneously because separate paths exist between the bins and the ports. On the other
hand, if both ports attempt to access two different memory locations in the same bin, then a
conflict occurs. Since only the part of the path from the ports to the bins is duplicated, the
ports will inevitably attempt to use the same bin for different purposes. Since both ports
cannot obtain perfect data in the case of a conflict, it is standard practice to cause at least one
of the ports to wait. Thus, when a conflict occurs, at least one of the ports sees additional
delay. This delay not only increases the average delay, but its non-deterministic nature
increases the complexity of the system that uses the multiport RAM. Also, the arbitration
circuitry must designed with extreme care.

2.3 Other related work

Tanaka [12) describes a clever method of organizing a disk array for a page-memory and disk­
cache system, wherein each disk stores a different word of each page, and the different ports
access the words of each page in different, but compatible, orderings. His method does not
apply here, since we access each word as an atomic operation; Tanaka has an advantage since
the words of a page can be read in an arbitrary order. On the other hand, the techniques
we apply here could conceivably be applied to work in the disk array application discussed
by Tanaka.

3 The new design

The multiport memory design presented in this paper avoids the area penalty associated
with the pure replicated control circuits, and also avoids delays associated with multiplexed
approaches. It simplifies the use of the multiport RAM and improves its speed.

In this paper we illustrate how to build a multiport memory with a narrow internal data
path, yet with nearly the same performance. The important characteristic of a narrower
data path is that it cannot support, in the general case, completely independent access from
the ports to the memory cells. Occasionally, several ports will try to simultaneously use a
part of the data path that is too narrow to support all of the users. In this case there is an
inevitable conflict and every port's request cannot be simultaneously serviced. The essence
of this paper is a novel way to handle conflicts.

This invention is based on three observations.

1. One very seldom stores information in memory systems as single-bit objects but rather
one stores larger abstract objects such as words, data packets, data structures, and
database records. In this paper we will refer to all of these larger objects as words.

4

2. If a word is relatively long compared to a single bit, then relatively little overhead
is incurred by additionally storing the parity-check information needed to correct bit
errors in the word, provided the number of bit errors is kept small.

3. It is possible to store the words in memory in such a way that conflicts result in bit
errors rather than whole word errors. Furthermore, one can keep the number of bit
errors caused by conflicts small. Each port can thus use an error correction device
that corrects all of the bit errors caused by conflicts, resulting in behavior that appears
perfect to the user.

In Section 3.1 we begin with a description of the memory organization used, and then
describe the addressing and error-correction techniques employed in Sections 3.2 and 3.3.
Section 3.4 discusses the issues arising from writing to memory, and then Section 3.5 describes
the generalization of this design to general multiport memories (i.e., where the number p of
ports may be larger than 2).

3.1 Memory organization

We describe the memory organization in three steps:

• First, we describe the organization of simple single-port memory that is partitioned
into "bins."

• Second, we describe a straightforward attempt to generalize this design to a dual-port
design, and note that conflicts are not handled adequately.

• Third, we describe how a modification of the bin addressing method can reduce the
problem caused by conflicts to that of handling a small number of "erasure errors."

Section 3.2 then gives a fuller description of how the addressing logic can be constructed,
and Section 3.3 describes how the error-correction logic can be implemented.

Figure 2 shows our starting point: a simple single-port RAM design for a memory of 2n
b-bit words. We suppose that each n-bit address x is divided into an n0-bit initial portion
x0 and an n1-bit final portion x 1 , where n = n0 + n 1 .

The memory is organized into b columns. Each column is a "bit plane," so that the yth
column is responsible for storing the yth bit of each data word, for 1 :s; y :s; b. The yth
column is thus attached to the yth wire of the data bus.

Each column stores 2n bits, organized into 2no "bins" of 2n1 bits each. The value x0 is
used to select the correct bin, and the value x 1 is used as an offset within the bin to select
the correct bit. The figure shows x 0 being used to select a row of bins with decoder/selector
logic. The figure does not show x 1 being distributed to each bin; the bins could share the
associated decoder/selector logic for decoding x 1 . Also not shown is the distribution of the
read/write signal.

Figure 3 illustrates a straightforward attempt to extend the single-port architecture of
Figure 2 to a dual-port design. Another port (port B) has been added, including a new
data bus, a new address bus, and a new decoder selector circuit for the new address. Note

5

◄•---- b columns ------►

t
Address

Data

Figure 2: A simple single-port RAM architecture. This figure illustrates a 16-word 4-bit
memory (n = 4, b = 4) with n 0 = n1 = 2. The position of word at address x = x 0 x 1 = 1001
is shown.

Addre~A

{:

Data
A

PortA

---bcolumns --►

9 01

~
~
Cl)

110

0

..
9
~ Address B
13
Cl]

x'o}
.:-
Cl)

1
0

x'1

PortB

Figure 3: A dual-port RAM architecture based on the single-port RAM of Figure 2. This
architecture does not handle conflicts well.

6

s 1 1 s'
bin

X1 x'
1

2°1 bits

R/W R/W'

1 1 1

d e d'

Figure 4: A dual-port bin.

the amount of circuit duplication here is far less than that called for in the full replication
strategy described in Section 2.1, since the size of the decoder being replicated here is only
2"° rather than 2n. (The decoders for x 1 do not need to be duplicated, since a simple gating
circuit can feed either x 1 or x; to the decoder within each bin.) The bins are only slightly
modified, not duplicated. The figure shows port A accessing word x = x0x 1 = 1001 and
port B accessing word x' = x~x; = 0111.

Figure 4 shows the configuration of the dual-port bin used in the architecture of Figure 3.
This bin stores 2n1 bits, and makes them available in a "restricted dual-port" mode as follows.
Each such bin has a port A selectors, a port A address bus xi, a port A read/write signal - __ ,
R/W, and a port A data bus d. It has corresponding connections s', x;, R/W and d' for
port B. The bin also has an "erasure output" e. In typical operation, the bin is used either
by port A or port B, but not both. For example, if the bin is selected by port B (signalled
using s') for a read operation (signalled using R/W'), then the bit at address x~ within the
bin is placed on data bus d'. Since s is not active, the inputs x 1 and R/W are ignored, and
the data bus d is not affected. Such a bin is easily built out of a single-port memory array
using simple multiplexors at the input/output connections.

What does such a dual-port bin do if there is a conflict (both ports attempting to use
the bin)? In this case the bin only satisfies the request for port A, and ignores the port B
request. It also raises the error signal e, however, to indicate that this bin could not satisfy
the port B request.

Returning to Figure 3, we see that this simple dual-port architecture works correctly
except when x0 = x~, in which case the port B request will be totally ignored. The port A
request will always be handled properly.

We thus see that the architecture of Figure 3 is quite economical (not much extra circuitry
is required over the basic single-port design of Figure 2) but it is not a perfect dual-port
design, since conflicts can cause a request on port B to be ignored.

7

◄◄----- b columns ___ .,►

2no rows

Figure 5: Illustration of the addressing principle.

Can we modify this design to handle conflicts properly? The answer is yes. We now
examine how this may be achieved. There are two basic ideas:

1. We can modify the addressing scheme so that any two distinct memory positions overlap
in at most one bin. Therefore, when a conflict occurs at most one bit position in the
port B request is ignored. All other bit positions are read/written correctly. (Port A
is always correct, as before.)

2. We can add some error-correction circuitry to the port B data bus to ensure that the
damaged port B bit is correctly restored.

With these modifications we have a dual-port memory design that can handle any two
simultaneous reads correctly, or a read and write operation concurrently. Two simultaneous
write operations require additional work, however, as we shall see. In the next two sections
we consider how the two ideas listed above are implemented.

3.2 Addressing method

It is an unusual characteristic of our memory design that the bits that make up a word are at
different bins in each column, and any two distinct words utilize at most one bin in common.
We call this the "unit-overlap principle." Figure 5 illustrates the unit-overlap principle. The
cross-hatched word, selected by port A, is in bins 3, 1, 4, and 2 in columns 1, 2, 3, 4. The
gray word, selected by port B, is in bins 2, 3, 4, and 1 in columns 1, 2, 3, and 4. Only one
bin is in conflict (bin 4 in column 3) so that the port B word can be read with only one
erasure error, in column 3.

Because of the unit-overlap principle, we can simultaneously read out any two words on
the two ports, and be guaranteed that at most one bit of the word read out on port B is

8

incorrect. As before, all of the bits read out on port A are correct. Moreover, we know which
bit of the port B word is potentially incorrect, since we know which bin had a conflict-this
information is available from the e bits in each column. (We assume that the e bits of each
column are combined to indicate which columns may have errors in the port B outputs.)
Using simple error-correction techniques, as described in Section 3.3, we can correct this
error and thus achieve simultaneous correct read-out of any two words in the memory.

In the rest of this section we examine how to arrange the words in memory so as to satisfy
the unit-overlap principle.

Let B(xo, x 1, y) denote the index of the bin used in column y to store the yth bit of the
word with address x = x0 x 1. We need a formula for B so that if address x = x0x 1 is different
from address x' = x~x~, then at most one value of y satisfies the equation

(1)

This condition guarantees that the addressing scheme satisfies the unit-overlap principle.
The computation of B(x 0, Xi, y) is performed using finite field (or Galois field) arithmetic.

(See Berlekamp [2], for example, for details of arithmetic in Galois fields.) This form of
arithmetic requires no carries and can be quite fast.

Which finite field do we use? Since we want the result to be an n0-bit number, we use
the Galois field G F(2no). This field contains 2no elements, each of which corresponds to a
bit string of length n0 . We assume from now on that n0 ~ n 1 and that n0 ~ lg b. This
assumption can be removed without undue difficulty, but it requires a rather more elaborate
addressing scheme. (Details omitted.) This assumption means that x 1 can be interpreted
as an element of GF(2n°), simply by appending n0 - n 1 zeros to the end of x1 , so that it
becomes a bit string of length n0 . Similarly, the column index y (which requires r1g bl bits
to represent) can similarly be interpreted as an element of GF(2n°). Thus all inputs to B
are elements of G F(2no), and we can perform the computation of B(x0 , x1 , y) in this field.
Let "EB" and "®" denote respectively the operations of addition and multiplication in the
field GF(2no).

We can thus express our formula for B (x0 , xi, y):

(2)

One can view the definition of B(x 0 , x1, y), viewed as a function of y, as a line where
x 0 is the intercept and x 1 is the slope. Since no two distinct lines can intersect at no more
than one point, no two distinct addresses can conflict (same bin B) in more than one column
y. This is just the unit-overlap principle, which also follows directly from the properties of
fields (substituting the definition of B into equation (1) gives an equation that is linear in
y, and so can have at most one solution, given that the other values are fixed). Therefore,
equation (2) provides an addressing scheme that satisfies the unit-overlap principle; any two
distinct words overlap in at most one bin.

The implementation of our addressing scheme requires a modest amount of additional
circuitry beyond that employed by the scheme of Figure 3. For each column y of the memory,
circuitry is needed to compute B(x 0 ,x 1 ,y) (for port A) and B(x~,x~,y) (for port B). We
need 2b finite-field adders and 2b finite-field multipliers. Each adder requires no exclusive-or

gates, and each multiplier requires less than n5 exclusive-or gates. (See Berlekamp [2, Section
2.41], and note that for each column the value of y is a fixed constant, so that multiplying
by y is multiplying by a. constant, and the exclusive-or circuitry can be designed in advance
as a. function of y. If n0 is small, ROMs can be used to store the multiplication and addition
tables.)

3.3 Error-correction

ln this section we consider the problem of correcting a single bit error in the word that has
been read from port B. The unit-overlap principle described in Section 3.2 guarantees that
at most one bit of the port B data will be in error.

The application of error-correction here is unusual in that we always know where (i.e., in
which bit position) the potential error lies. We can thus view the output from port B as a
binary word in which at most one bit position has been "erased" (replaced with the symbol
"?"). The error output e will be active for at most one column; that column is the one whose
output is interpreted as a "?". As an example, for b = 9 we may have an output word such
as

01?110100, (3)

where the "?" indicates a potential error in position 3.

Correcting the erasure error is very simple, if we know what the overall parity of the word
is supposed to be. For example, suppose that all words are stored with odd parity (every
word is stored with an odd number of "1" bits); this may be accomplished by including a
parity bit with each word stored. Then the missing bit in the word (3) above, for example,
must be a "1".

We thus assume that each word is stored with an additional parity bit, so that single-bit
erasures can be easily corrected. The word read from memory on port B is checked to see if
it contains any erasures; if so, then the erasure symbol "?" is replaced by a "0" or "1" as
necessary to satisfy the overall parity constraint.

Some versions of our scheme require the ability to correct more than single errors. The
general theory of correcting erasure errors can be found in Elias [4], Peterson and Weldon [8),
or Berlekamp [2]. While correcting a single erasure error only requires a single extra parity
bit, correcting two or more erasure errors is significantly more work. In general, a linear
error-correcting code with minimum weight of a code word equal to w can be used to correct
up to w - l erasure errors (see Peterson and Weldon [8, exercise 3.9]). (This is twice as
good as the corresponding situation for random errors (that is, errors in unknown position),
where only (w - 1)/2 errors can be corrected; one random error is as much trouble as two
erasures.) This implies that for correcting multiple erasure errors each erasure error requires
approximately an additional lg(b) parity symbols. The decoding circuitry required for two or
more erasure errors is significantly more complicated than required for single erasure errors,
but is not outside the realm of practicality.

10

3.4 Writing to memory

So far, we have presented our new design as if it were a multiport ROM. We now consider
the complications that arise in handling write operations as well as read operations.

We begin by considering what restrictions arise if we wish to utilize the simplest single­
error-correction scheme described above. The primary requirement is that each word is
stored correctly with a correct parity bit. This implies that

1. the memory circuit generates the correct parity bit when writing a word into memory,

2. that at most one of the two ports be used for writing into memory on any cycle, and

3. if one port is writing and other is reading, then the port that is writing is given priority
on any bin where the two operations conflict.

Restricting write operations to (say) only port A is not an uncommon feature; note, for
example, that the Signetics 82S112 8 x 4 dual-port RAM [10), allows write operations through
only one of its two ports. Condition (3) guarantees that no errors are introducing during
the writing process itself because of conflicts. We believe this version of our scheme to be
the most practical variation.

In some cases, however, it may be desirable to allow both ports to write simultaneously
into memory. Encompassing this possibility is conceptually straightforward, though more
expensive in hardware. Each word needs to stored with enough additional parity bits to
enable correction of up to one erasure and one random error, because now the writing
operation itself may introduce an erasure error, in addition to the error normally possible
with a read operation, but unless the position of the erasure is also stored, this error will
appear random when read later. That is, when two simultaneous write operations conflict,
one of them can introduce an error anywhere in the word stored. Later on, when that word
is read out, a second error may occur. The error-correction circuitry must then be able to
correct both errors.

3.5 Generalization to more than two ports

The ideas described above can be generalized to handle more than two ports, as follows.

Suppose we implement a p-port memory, for some p > 2, using the addressing scheme as
described in Section 3.2. Then p words are accessed simultaneously, and each word can have
up to p - l conflicts.

If we are implementing a p-port ROM, then we need to ensure that each word is stored
with enough parity bits to permit the correction of up to p - 1 erasure errors. Without
adding any additional parity bits, we can permit one port to write during each cycle (as long
as that port gets priority in any conflicts).

A p-port RAM that allowed any port to write during any cycle would require that each
word be stored with enough parity-correction bits to enable the correction of up to 2(p - 1)
errors, since p - l can be introducing during writing and p - l during reading.

11

4 Conclusions

We have described a novel implementation of multi port memories, based on the use of single­
port memories, an addressing scheme utilizing Galois field arithmetic, and error-correction.
The scheme is particularly attractive from an engineering viewpoint for dual-port memories
where at most one port is allowed to write during any cycle. Generalizations to more ports
and a higher degree of parallelism during writes is also possible.

Acknowledgments

We thank Peter Elias and Tom Knight for helpful discussions.

References

[l] F.E. Barber, D.J. Eisenberg, G.A. Ingram, M.S. Strauss, and T.R. Wik. A 2kx9 dual
port memory. International Solid-State Circuits Conf., pages 44-45, 302, 1985.

[2] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.

[3] Cypress. Applications Handbook. Cypress, 1989.

[4] Peter Elias. The noisy coding theorem for erasure channels. American Mathematical
Monthly, 81(8):853-862, October 1974.

[5] Texas Instruments. The TTL Data Book for Design Engineers. Texas Instruments,
1976.

[6] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

[7] Kevin J. O'Connor. The twin-port memory cell. IEEE J. Solid-State Circuits, SC-
22(5):712-720, October 1987.

[8] W. Wesley Peterson and E. J. Weldon, Jr. Error-Correcting Codes. MIT Press, second
edition, 1972.

[9] T. Sakurai, K. Nogami, K. Sawada, and T. Iizuka. Transparent-refresh DRAM (TReD)
using dual-port DRAM cell. IEEE 1988 Custom Integrated Circuits Conf., pages 4.3.1-
4.3.5, 1988.

(10] Signetics. Signetics Data Manual. Signetics, 1976.

[11] B.A. Wooley T.-S. Yang, M.A. Horowitz. A 4-ns 4kxl-bit two-port BiCMOS SRAM.
IEEE J. Solid-State Circuits, 23(5):1030-1040, October 1988.

[12] Yuzuru Tanaka. A multiport page-memory architecture and a multiport disk-cache
system. New Generation Computing, 2:241-260, 1984.

[13] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison­
Wesley, 1985.

12

	sc0676ab47.tif
	sc0676c72e.tif
	sc0676c72e01.tif
	sc0676c72e02.tif
	sc0676c72e03.tif
	sc0676c72e04.tif
	sc0676c72e05.tif
	sc0676c72e06.tif
	sc0676c72e07.tif
	sc0676c72e08.tif
	sc0676c72e09.tif
	sc0676c72e10.tif
	sc0676c72e11.tif

